

From the AERA Online Paper Repository

http://www.aera.net/repository

Paper Title Characterizing the Nature of Student Theory Building in the Context of Computational Modeling Activities

Author(s) Hillary Lucille Swanson, Utah State University; Kit Martin, Northwestern University; Bonni Jones, Utah State University; Siyu Wu, Utah State University; Maryam Hedayati; Bruce Sherin, Northwestern University; Uri J. Wilensky, Northwestern University

Session Title Science Education in Computer-Supported Collaborative Settings

Session Type Roundtable Presentation

Presentation Date 4/9/2021

Presentation Location Virtual

Descriptors Computers and Learning, Science Education

Methodology Qualitative

Unit SIG-Learning Sciences

DOI <u>https://doi.org/10.3102/1691190</u>

Each presenter retains copyright on the full-text paper. Repository users should follow legal and ethical practices in their use of repository material; permission to reuse material must be sought from the presenter, who owns copyright. Users should be aware of the <u>AERA Code of Ethics</u>.

Citation of a paper in the repository should take the following form: [Authors.] ([Year, Date of Presentation]). [Paper Title.] Paper presented at the [Year] annual meeting of the American Educational Research Association. Retrieved [Retrieval Date], from the AERA Online Paper Repository.

Characterizing the nature of student theory building in the context of computational

modeling activities

Abstract

It is widely agreed that engaging students in authentic science practices is important for science education. Theory building is a central practice of science. Today, many scientists build theory through computational modeling. This paper presents a block-based computational modeling activity to support students' engagement in building theory about the spread of disease. We characterize the work of one student, Sage, in the context of her construction of models of Ebola, the flu, and a zombie apocalypse. Using grounded analysis, we identified 37 moves involved in Sage's theory building, related to her refinement of models, as well as meta-knowledge about the nature of the models. We present these moves and illustrate them using data from Sage's construction of the three models.

It is widely agreed that engaging students in authentic science practices is important for science education (Duschl, Schweingruber, & Shouse, 2007). Theory building is a central practice of science. Today, many scientists build theory by constructing computational models that, when run, produce outcomes that can be explored and compared with experimental findings (Weintrop et al., 2016; Foster, 2006).

A number of research programs have explored ways of engaging students in theory building through computational modeling. There is a long tradition of asking students to create models of phenomena from Newtonian physics. diSessa (1995) describes a case where high school students re-invented F=ma through their development of computational models. Sherin (2001) looked broadly at the possibility of using programming as a language for expressing simple physical ideas. Wilensky and colleagues have investigated student engagement in computational modeling of complex systems phenomena, such as predator-prey dynamics, using NetLogo (Wilensky, 1999; 2001; Wilensky & Reisman, 2006). Recent work has examined student construction of models using NetTango (Horn & Wilensky, 2011; 2012), a block-based interface to NetLogo. These studies have examined students' development of both scientific understanding and computational thinking through their construction of models (Horn et al., 2014; Wagh & Wilensky, 2017).

The present work builds on this tradition by examining the nature of student theory building in the context of computational modeling activities. It seeks to characterize elements of theory building enabled and supported by block-based microworlds.

Theoretical Foundations

We define scientific theory building as a family of practices through which scientists systematically refine theoretical knowledge artifacts, including laws, models, explanations, constructs, and categories (Author, 2020a). As artifacts are refined, thinking is refined. Our perspective aligns with Einstein's (1936) notion that "the whole of science is nothing more than a refinement of everyday thinking," and constructivist frameworks that view the construction of new knowledge as a refinement of prior knowledge (Piaget, 1971). It also aligns with construction ism (Papert, 1980), which argues that learning happens best through the construction of public artifacts, such as computational models. In our work, we seek to characterize students' theory building by describing the moves through which they refine their computational models. In this paper, we focus specifically on characterizing the process of student theory building, leaving the science learning that results to other papers.

Methods

Study Goals

This paper presents the results of an analysis of data taken from a larger study focused on scaffolding student engagement in different approaches to scientific theory building, including the construction of agent-based computational models. We are iteratively refining block-based microworlds using the NetTango interface to NetLogo. NetTango makes the computational power of NetLogo accessible to authors by using a block-based programming language curated to a particular phenomenon. NetTango blocks are not a full programming language, but domain-specific blocks relevant to the modeled phenomenon. Previously called *semantic blocks* (Wilkerson-Jerde & Wilensky, 2010) and now called *domain blocks* (Wagh et al., 2017) the

blocks are primitive elements of code that represent agents' actions, which can be combined to model a specific phenomenon. We are designing domain-block libraries for simulating complex systems phenomena and studying how children use the blocks to engage in scientific theory building. This study asks the question *"what is the character of student theory building in the context of computational modeling?"*

Study Design

To address this question, we tested NetTango models with middle school students (ages 12-14) during one-on-one 1.5-hour task-based interviews. During each interview, the student had full command of a laptop with an agent-based microworld. The interviewer guided them through tasks and questions from a semi-structured protocol, which introduced the features of the microworld and then prompted the student to model a particular phenomenon (e.g., an epidemic of a disease of their choice).

This study focuses on an interview with one student, Sage. Sage was 13 years old and had just started 8th grade at a public school in her small Midwestern city. Sage explored the *Spread of Disease* model, shown in Figure 1. The screenshot to the left shows the agent-based microworld before a model has been built. The screenshot to the right shows the microworld with a model that has been built and initialized. In both screenshots, the black box to the left is the *world* which depicts the activity of the agents that are programmed to behave according to the rules specified by the model. The *setup* and *go* buttons are controlled by procedures (red blocks) that the user must drag from the block library (far right) into the modeling field (middle) and then define by connecting with blocks (purple, grey, and green), such as *move, if contact person*, and *infect*.

[Figure 1 goes here]

Sage's interview was recorded using video, audio, and screencast technology. The audio recording was transcribed. A fine-grained grounded analysis was applied to both the screencast and interview transcript to identify theory-building moves that Sage enacted. First, the screencast of Sage's entire interview was reviewed and times were noted during which she engaged in building models for particular diseases, namely Ebola, the flu, and a zombie apocalypse. These episodes were then marked on the transcript, which was then read for evidence of theory-building moves that corresponded with basic categories determined in prior research (Authors, 2020b). These categories were 1) initial articulation moves, 2) testing moves, 3) refining moves, 4) applying moves, and 5) modeling meta-knowledge. The moves identified in the transcript were coordinated with screencast recordings to get a sense for the student's actions in the microworld and develop a more complete picture of her theory-building moves.

Findings

The grounded analysis revealed 37 theory-building moves across the five categories. The general categories and specific moves are outlined in Table 1 and then introduced (in italics) and briefly unpacked below. They are described in greater detail and exemplified in Tables 2-6, in Appendix B.

[Table 1 goes here]

Initial Articulation Moves

Sage crafted her initial model through *initial articulation moves*, including *recounting prior knowledge*, *initial planning*, *determining relevant code*, *specifying agent rules*, *purposefully selecting and approximating parameter values*, *deciding how to model time*, and

reaching for and making sense of available resources. For example, in her initial construction of a model of Ebola, Sage began by describing what she knew about the disease and how this might be represented in her model. She then looked through the available code and determined that blocks like "infect in a radius" were less useful to her model, because her understanding of Ebola was that it was transmitted through direct contact. She dragged code-blocks into the authoring space to create a basic model where people would infect each other with some probability when they made contact. She asked if she could search for information about the disease online, and translated what she found into approximate values for parameters including probability of infection, death and recovery.

Testing Moves

Sage tested her model through *testing moves*, including *predicting and explaining the outcome of a model run, planning for purposeful exploration, testing parameter settings or agent-rules, comparing trials, slowing down a model run, observing model behavior, noticing how a model implements code, comparing results of a model run with predictions, evaluating a model-run outcome and explaining its cause*, and *comparing the modeled phenomenon with other phenomena*. For example, in her construction of a model of the flu, Sage predicted the people would spread the infection much more quickly than Ebola, noting that the probability of dying was much lower in the case of the flu, so that people should live long enough to transmit the disease. When the rate of transmission was still not as high as she had expected, she announced that she wanted to collect a dataset and compare runs with different probabilities of infection, and that she wanted to slow the model to see what was happening in agent interactions when the disease died out.

Refining Moves

Sage modified or debugged her model through *refining moves*, including *noticing a* problem and modifying code blocks, modifying parameter values for ease of mental mathematical computations, modifying code to simplify the model, and debugging thinking. For example, before testing her initial model of Ebola, Sage noticed a problem with the code: a command for "move" was missing from the procedure. She noted that this wouldn't work - the people would stay where they were and no one would get anyone else sick. She added the "move" block to remedy the situation. She also modified the number of initially healthy and sick people so that they would add to 100, for ease of comparing later ratios with initial ones. She debugged her thinking and refined her model when her first model run produced a surprising result: within several ticks everyone in the world was healthy. She attributed this to the very high death rate and lowered the probability of death to get the disease to spread. After constructing and testing her model of the flu, she noted that surprisingly, the flu epidemic was more deadly at the population level, despite Ebola being the more deadly disease at the individual level. This is a notable shift in understanding, which shows that Sage's engagement in computational modeling is helping her to resolve a commonplace confusion regarding level of causality (Wilensky & Resnick, 1999).

Applying Moves

Sage used the model to make sense of phenomena through *applying moves*, including *describing the outcome of a model run, interpreting numerical readouts, coordinating data from multiple readouts in the interface, referencing data, making sense of outcomes, explaining the*

aggregate-level phenomenon as a result of agent-level interactions, comparing the model with the real world, comparing the modeled phenomenon with other phenomena, drawing conclusions about complex systems dynamics, assessing the reasonableness of results, and looking for key relationships. For example, in her model of the flu, Sage interpreted the graph to draw conclusions about the rate the disease spread through the population. She coordinated between the graph and the readout of the number of people in the world to understand the role of the probability of death in the model. She also related the outcomes of her model to what she knew about the Spanish flu epidemic of the early 20th century.

Meta-Knowledge

Meta-knowledge did not consist of moves, but rather, elements of understanding Sage showed regarding the nature of her model and the activities in which she engaged, including *identifying limitations of the microworld, distinguishing critical from cosmetic components, noticing the approximate nature of the model, identifying how the approximate nature of the model may or may not impact model outcomes, awareness of the limits of her own knowledge,* and *reaching for credible resources.* For example, in her zombie apocalypse model, Sage wished she could program the zombies to move more slowly than humans in the world. She remarked she didn't think this would really make a difference, because she thought agent speed was "just cosmetic" and wouldn't actually influence the model's outcomes. In her model of the flu, she noted that the maximum number of people who could initially occupy the world was 400, and that this was considerably smaller than the population of a city. Unlike agent speed, Sage regarded population size as a factor that could change the dynamics, and therefore outcome, of the model run.

Significance

This study characterizes student theory building in the context of computational agent-based modeling. Findings suggest that such theory building is a highly complex activity, consisting of a constellation of moves related to the initial articulation, testing, refinement, and application of the model, as well as meta-knowledge concerned with the nature of models and modeling. The work makes a contribution to the larger project of characterizing the nature of student engagement in different forms of scientific theory building (Author, 2020b). More specifically, our findings offer insight into the nature of student work at the intersection of two scientific practices emphasized by the NGSS: modeling and computational thinking. Our work is foundational for the development of learning objectives for science curricula and assessments that capture the richness of student engagement in scientific theory building.

References

Author (2020a)

Author (2020b)

diSessa, A. A. (1995). Designing Newton's laws: Patterns of social and representational feedback in a learning task. In R.-J. Beun, M. Baker, & M. Reiner (Eds.), *Dialogue and Interaction: Modeling Interaction in Intelligent Tutoring Systems*. Berlin: Springer-Verlag, 105-122.

Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). (2007). *Taking science to school: Learning and teaching science in grades K-8* (Vol. 500). Washington, DC: National Academies Press.

Einstein, A. (1936). Physics and reality. Journal of the Franklin Institute, 221(3), 349-382.

Foster I (2006) 2020 computing: a two-way street to science's future. Nature 440(7083):419

- Horn, M.S., Brady, C., Hjorth, A., Wagh, A., & Wilensky, U. (2014). Frog Pond: A code first learning environment on natural selection and evolution. Proceedings of IDC 2014.
- Horn, M.S., & Wilensky, U. (2011). NetTango [Computer Software]. Evanston, IL: Center for Connected Learning and Computer Based Modeling, Northwestern University.
- Horn, M.,S. & Wilensky, U. (2012). *NetTango: A mash-up of NetLogo and Tern*. In Moher, T.
 (chair) and Pinkard, N. (discussant), When systems collide: Challenges and opportunities in learning technology mashups. Symposium presented at the annual meeting of the American Education Research Association, Vancouver, British Columbia.
- Papert, S. (1980). Mindstorms: Computers, children, and powerful ideas. NY: Basic Books.
- Piaget, J., *Psychology and Epistemology: Towards a Theory of Knowledge* (New York: Grossman, 1971).
- Sherin, Bruce L. "A Comparison of Programming Languages and Algebraic Notation as Expressive Languages for Physics." *International Journal of Computers for Mathematical Learning* 6, no. 1 (2001): 1–61.Wadsworth, B. J. (1996). *Piaget's theory of cognitive and affective development: Foundations of constructivism*. Longman Publishing.
- Wagh, A., Cook-Whitt, K., & Wilensky, U. (2017). Bridging inquiry-based science and constructionism: Exploring the alignment between students tinkering with code of

computational models and goals of inquiry. *Journal of Research in Science Teaching*, 54(5), 615-641.

- Wagh, A., & Wilensky, U. (2017). EvoBuild: A Quickstart Toolkit for Programming Agent-Based Models of Evolutionary Processes. Journal of Science Education and Technology, 1-16.
- Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. *Journal of Science Education and Technology*, 25(1), 127-147.
- Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
- Wilensky, U. (2001) Modeling nature's emergent patterns with multi-agent languages.Proceedings of EuroLogo 2001. Linz, Austria
- Wilensky, U., & Reisman, K. (2006). Thinking like a wolf, a sheep, or a firefly: Learning biology through constructing and testing computational theories—an embodied modeling approach. *Cognition and instruction*, 24(2), 171-209.
- Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of the world. *Journal of Science Education and technology*, *8*(1), 3-19.
- Wilkerson-Jerde, M., & Wilensky, U. (2010). Restructuring Change, Interpreting Changes: The DeltaTick Modeling and Analysis Toolkit. Paper presented at the Constructionism 2010 Conference, Paris.

Appendix A: Figures

Figure 1. Screenshots of the Spread of Disease microworld before (left image) and after (right

image) a model has been built.

Appendix B: Tables

Table 1.	. Theory	Building	Moves
----------	----------	----------	-------

Initial	Testing moves	Refining moves	Applying moves	Meta-knowledge
articulation				
moves				
Recounting prior	Predicting the	Noticing a	Describing the	Identifying
knowledge	outcome of a	problem	outcome of a	limitations of the
	model run		model run	modeling
Initial planning		Modifying code		environment
	Explaining the	to solve a		
	prediction	problem		

		Interpreting	Distinguishing
Planning for	Modifying	numerical	critical from
purposeful	parameter values	readouts	cosmetic
exploration	for ease of		components
	mental	Coordinating	
Testing	mathematical	data from	Noticing the
parameter	computations	multiple	approximate
settings or		readouts in the	nature of the
agent-rules	Modifying code	interface	model
	to simplify the		
Comparing	model	Referencing data	Identifying how
across trials			the approximate
	Debugging	Making sense of	nature of the
Slowing down a	thinking	outcomes	model may or
model run			may not impact
		Explaining the	model outcomes
Observing		aggregate-level	
model behavior		phenomenon as	Awareness of
		a result of	the limits of
Noticing how a		agent-level	one's own
model		interactions	knowledge
implements code			
	Planning for purposeful exploration Testing parameter settings or agent-rules Comparing across trials Slowing down a model run Observing model behavior	Planning forModifyingpurposefulparameter valuesexplorationfor ease ofacstingmathematicalparametercomputationssettings orto simplify theagent-rulesModifying codeformparingmodelacross trialsDebuggingSlowing down aHinkingnodel runLinkingobservingJobservingmodel behaviorJobservinginodelLinkingin	InterpretingPlanning forModifyingnumericalpurposefulparameter valuesreadoutscxplorationfor ease ofmentalCoordinatingTestingmathematicaldata fromparametercomputationsmultiplesettings orreadouts in theagent-rulesModifying codeinterfaceforsinglify themodelReferencing dataacross trialsDebuggingMaking sense ofSlowing downHinkingcustomesnodel runLagend-levelgargeat-levelnodel behaviorI.garel-levelNoticing howaI.agent-levelindelI.jatencions<

	Comparing the	Reaching for
Comparing	model with the	credible
results of a	real world	resources
model run with		
predictions	Comparing the	
	modeled	
Evaluating a	phenomenon	
model-run	with other	
outcome	phenomena	
Explaining the		
cause of a model	Drawing	
run	conclusions	
	about complex	
Comparing the	systems	
modeled	dynamics	
phenomenon		
with other	Assessing the	
phenomena	reasonableness	
	of results	
	Looking for key	
	relationships	

Table 2. Initial Articulation Moves

Move	Description	Example
Recounting prior knowledge	The student considers what	The student recounts
	they know about the	knowledge they have about
	phenomenon of interest.	getting sick and spreading
		disease, or stories they have
		heard about the particular
		disease.
Initial planning	The student considers what	The student knows that
	should go in the model based	people spread germs by
	on their prior knowledge of	coughing and sneezing or
	the phenomenon.	through direct contact, and
		that how the germs are
		transmitted depends on the
		disease.
Determining relevant code	The student considers what	The student decides that "die"
	should go in the model based	is relevant for a model of
	on the available code blocks	Ebola, but not for a model of
	and their relevance to the	the flu.
	phenomenon.	

Specifying agent rules	The student specifies the rules	The student specifies that
	of agent behavior and	every tick of the clock, agents
	interaction, encoding their	move, infect their neighbor if
	expectations by arranging	they are sick, and recover
	blocks in the "go" procedure.	with some probability.
Purposefully selecting	The student purposefully	The student chooses a high
parameter values	selects the values of	probability of infection for a
	parameters based on their	disease like the flu, because
	hypotheses of agent	they think the flu is pretty
	characteristics and initial	infectious.
	conditions.	
Approximating parameter	The student approximates	The student uses rounded
values	parameter values.	values for the initial number
		of sick and healthy people in
		the world, for ease of
		calculation. They use
		"guesstimates" in the place of
		exact known values for
		parameters like probability of
		infection.

Deciding how to model time	The student considers how	The student might choose to
	time should be modeled in the	have ticks represent minutes,
	simulation.	hours, or days.
Reaching for available	The student reaches for	The student looks through a
resources	available resources to	textbook or conducts a web
	supplement their prior	search.
	knowledge.	
Making sense of resources	The student makes sense of	The student looks at facts on
	available resources,	the World Health
	translating the information	Organization website for
	into ideas that are useful to	Ebola and uses calculated
	their construction of the	transmission rates to inform
	computational model.	the value they select for the
		probability of infection
		parameter.
Describing expected model	The student describes the	The student reads through the
behavior	behavior they expect the	code line by line, checking it
	model to produce, based on	by describing aloud the
	the computational program	sequence of actions the agents
	they have built.	should enact.

Evaluating initial model code	The student evaluates the	The student reads through the
	program they have written	code and notes where they
	before running the model.	expect it to produce the
		expected outcomes, or where
		they are uncertain and
		perhaps experimenting.

Table 3. Testing Moves

Move	Description	Example
Predicting the outcome of a	The student describes the	The student sets the
model run	outcome they expect the	probability of infection near
	model to produce, based on	100% and predicts that
	the parameter settings they	everyone in the world will be
	have selected.	sick after only a short number
		of ticks.
Explaining one's prediction	The student explains why	The student explains that the
for a model run	they expect the model to	graph of the percentage of
	produce the aggregate-level	infected people should follow
	outcome they have predicted,	an S-curve because at first
	by reasoning through the	very few people have the
	agent-level interactions.	infection to pass on. When

		more people are sick, the rate
		of transmission will pick up
		with more people to pass the
		disease on. Finally, the rate of
		transmission will slow down
		with few people left who are
		susceptible.
Planning for purposeful	The student makes a plan to	The student plans to explore
exploration	run the model a number of	how the rate of recovery
	times, varying parameters	influences the graph of the
	over particular values and	percentage of people who are
	noting their effects.	sick over time.
Testing parameter settings or	The student tests a new	The student increases the
agent rules	parameter value or agent rules	number of people in the
	by running the model.	world who are sick at the
		beginning of the model run to
		see how that influences the
		model.
Comparing across trials	The student compares the	The student changes the
	outcomes of two or more	infectiousness of the disease
	simulation trials, modifying a	and compares the number of

	parameter from trial to trial.	clock-ticks it takes for
		everyone in the world to get
		sick.
Slowing down a model run	The student might slow down	The student lowers the
	the speed of the model run in	model-run speed in order to
	order to see how the	observe the individual agent
	programmed interactions play	interactions that result in a
	out in the simulation.	model where everyone dies
		within a few ticks of the
		clock.
Observing model behavior	The student describes what	The student announces that
	they see happening in the	the number of people infected
	model as it runs.	with Ebola is increasing.
Noticing how a model	The student makes sense of	The student adjusts the
implements code	how the model implements	infectiousness parameter to
	the code by experimenting	100% and notices that people
	with the blocks in their	have to occupy the same
	program.	location in space in order to
		transmit the disease.
Comparing results of a model	The student compares the	The student expresses

run with predictions	results of their model testing	surprise that the agents in
	with their predictions for the	their model behave
	model's behavior at either the	differently from their
	agent or aggregate level.	expectations, or that the
		aggregate-level outcomes
		represented by numerical
		readouts or graphs roughly
		match their mental-math
		predictions.
Evaluating model-run	The student evaluates the	The student may announce
outcomes	outcome of the model.	that the outcome was boring,
		interesting, or surprising.
Explaining the cause of a	The student explains the	For example, a student might
model-run outcome	outcome of the model at the	explain that Ebola disappears
	aggregate-level by reasoning	very quickly in their model,
	through the agent-level	leaving almost everyone
	behavior or interactions.	healthy, because the
		probability of death is so high
		that the initially infected
		people die before they have a
		chance to infect others in the

		world.
Comparing the modeled	The student predicts or makes	The student compares their
phenomenon with other	sense of an outcome run by	model of the flu to a model of
phenomena	comparing the modeled	Ebola.
	phenomenon with another,	
	related phenomenon.	

Table 4. Refining Moves

Move	Description	Example
Noticing a problem	The student notices something problematic about the model, either in its outcome or in a piece of model code.	The student notices that an element of code, such as "move" is missing from their "go" procedure.
Modifying code to solve a problem	The student debugs the model by modifying the agent-rules or a parameter.	If the disease doesn't spread beyond a single person, the student modifies the probability of infection of the disease, or the probability of

		recovery or death for the
		people in the world.
Modifying parameter values	The student adjusts parameter	The student sets the number
for ease of mental math	values so that they can easily	of people in the world who
	make sense of changes in	are initially sick and healthy
	value that occur in the	so that they add up to 100, as
	simulation.	changes in numbers of sick
		and healthy people over time
		can then be thought of as
		changes in percentage.
Modifying code to simplify	The student removes a block	The student has a block for
the model	of code that is complicating	"reproduce" in their "go"
	the model.	procedure, but then removes
		the block to simplify the
		model and understand the
		relationship between
		probability of recovery and
		the rate of the spread of
		disease.
Debugging thinking	The student debugs their	The student might initially
	thinking as a result of an	think that Ebola is very

unexpected model-run	deadly at the population level,
outcome.	however, when they run their
	model Ebola doesn't spread
	to very many people,
	violating their expectations.
	This causes them to refine
	their thinking about Ebola,
	understanding that a disease
	that is highly deadly for an
	individual is in fact less
	deadly for a population,
	because it "burns out" quickly
	and therefore has less of a
	chance to spread.

Table 5. Applying Moves

Move	Description	Example
Describing the outcome of a	The student describes the	The student exclaims that all
model run	aggregate-level phenomenon or outcome of the model run.	of the sick people disappeared very quickly.
Interpreting numerical	The student interprets the	The student traces their finger

readouts	graph to understand the	along the curve and notes that
	aggregate-level data.	the population of sick people
		is increasing and then
		decreasing over time.
Coordinating data from	The student coordinates data	The student looks at the
multiple readouts	from different readouts in the	readout for the number of
	interface.	people who died to make
		sense of the graph that shows
		the percentage of people who
		are sick over time.
Referencing data	The student refers to data as	The student refers to numbers
	evidence when making a	on the graph to talk about
	claim about the phenomenon.	how the population of sick
		people has increased or
		decreased over time.
Making sense of outcomes	The student makes sense of a	For example, the student
	model run's outcome by	might determine that
	considering the causal	probability of infection is a
	variables at play or by	key variable at play in their
	reasoning about the causal	model of disease spread.
	processes encoded in the	

	model.	
Explaining the	The student explains the	The student explains that the
aggregate-level phenomenon	aggregate-level phenomenon	number of people who are
as a result of agent	as a result of agent	sick increases slower at first
interactions	interactions.	because there are fewer
		people to spread the infection.
Comparing the model with	The student compares the	The student compares their
the real world	results of the model run with	model of the flu with the
	their understanding of the	Spanish flu epidemic of the
	phenomenon in the real	early 20th century.
	world.	
Comparing the modeled	The student compares the	The student compares the
phenomenon with other	phenomenon they have	deadliness of Ebola at the
phenomena	modeled with another, related	population level, to the
	phenomenon.	deadliness of the flu.
Drawing conclusions about	The student uses the model to	The student notes that Ebola
complex systems dynamics	draw conclusions about	is less dangerous to a
	complex systems dynamics,	population than the flu, or
	including the emergent nature	that epidemics are hard to
	of aggregate-level	start.

	phenomena, the non-linear	
	dependency of system	
	outcomes on parameters, and	
	the importance of feedback	
	and thresholds.	
Assessing reasonableness of	The student assesses the	The student notes that the
results	reasonableness of the results	number of people who get
	of their model.	sick makes sense, given the
		probability of recovery.
Looking for key relationships	The student notes a key	The student thinks there is a
	element of theory that they	ratio between recovery rate
	would like to identify.	and probability of infection.

Table 6. Meta-knowledge

Move	Description	Example
Identifying limitations of the	The student identifies	The student notes that there
modeling environment	limitations with the modeling	are no blocks that would
	environment.	allow one to write the
		program so that the healthy
		people move around the

		world while the sick people
		stay at home.
Distinguishing critical from	The student distinguishes	The student changes the
cosmetic components	between components of the	indicator of sick vs. healthy
	model that are critical, vs.	people from different colors
	those that are merely	to different shapes, but notes
	cosmetic.	that this change won't have
		any impact on the outcome of
		the model run.
Noticing the approximate	The student notes the	The student notes that the
nature of the model	approximate nature of the	model is different from the
	model.	real world in terms of the
		number of people in the
		world.
Identifying how the	The student identifies ways	The student notes that a city
approximate nature of the	the approximate nature of the	with a million people which
model may or may not impact	model may or may not impact	has an initial population of
model outcomes	the result of its simulation.	sick people of 1% has many
		more sick people than a world
		with the same percentage sick
		but only 200 people, and that

		this may impact whether or
		not the disease takes off.
Awareness of the limits of	The student notes an	The student admits they don't
one's own knowledge	awareness of the limits of	know what the probability of
	their own knowledge.	infection is in real life for
		both the flu and Ebola.
Reaching for credible	The student reaches for	The student navigates to the
resources	credible resources in making	website of a well-known and
	choices about initial	respected organization like
	parameter values.	the World Health
		Organization, rather than a
		blog, when looking up
		infectiousness of Ebola vs.
		flu.