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Characterizing the nature of student theory building in the context of computational 

modeling activities  



Abstract 

It is widely agreed that engaging students in authentic science practices is important for science 

education. Theory building is a central practice of science. Today, many scientists build theory 

through computational modeling. This paper presents a block-based computational modeling 

activity to support students’ engagement in building theory about the spread of disease. We 

characterize the work of one student, Sage, in the context of her construction of models of Ebola, 

the flu, and a zombie apocalypse. Using grounded analysis, we identified 37 moves involved in 

Sage’s theory building, related to her refinement of models, as well as meta-knowledge about the 

nature of the models. We present these moves and illustrate them using data from Sage’s 

construction of the three models.  



It is widely agreed that engaging students in authentic science practices is important for 

science education (Duschl, Schweingruber, & Shouse, 2007). Theory building is a central 

practice of science. Today, many scientists build theory by constructing computational models 

that, when run, produce outcomes that can be explored and compared with experimental findings 

(Weintrop et al., 2016; Foster, 2006).  

A number of research programs have explored ways of engaging students in theory 

building through computational modeling. There is a long tradition of asking students to create 

models of phenomena from Newtonian physics. diSessa (1995) describes a case where high 

school students re-invented F=ma through their development of computational models. Sherin 

(2001) looked broadly at the possibility of using programming as a language for expressing 

simple physical ideas. Wilensky and colleagues have investigated student engagement in 

computational modeling of complex systems phenomena, such as predator-prey dynamics, using 

NetLogo (Wilensky, 1999; 2001; Wilensky & Reisman, 2006). Recent work  has examined 

student construction of models using NetTango (Horn & Wilensky, 2011; 2012), a block-based 

interface to NetLogo. These studies have examined students’ development of both scientific 

understanding and computational thinking through their construction of models (Horn et al., 

2014; Wagh & Wilensky, 2017). 

The present work builds on this tradition by examining the nature of student theory 

building in the context of computational modeling activities. It seeks to characterize elements of 

theory building enabled and supported by block-based microworlds.  

 

 



Theoretical Foundations 

We define scientific theory building as a family of practices through which scientists 

systematically refine theoretical knowledge artifacts, including laws, models, explanations, 

constructs, and categories (Author, 2020a). As artifacts are refined, thinking is refined. Our 

perspective aligns with Einstein’s (1936) notion that “the whole of science is nothing more than 

a refinement of everyday thinking,” and constructivist frameworks that view the construction of 

new knowledge as a refinement of prior knowledge (Piaget, 1971). It also aligns with 

constructionism (Papert, 1980), which argues that learning happens best through the construction 

of public artifacts, such as computational models. In our work, we seek to characterize students’ 

theory building by describing the moves through which they refine their computational models. 

In this paper, we focus specifically on characterizing the process of student theory building, 

leaving the science learning that results to other papers.  

Methods 

Study Goals 

This paper presents the results of an analysis of data taken from a larger study focused on 

scaffolding student engagement in different approaches to scientific theory building, including 

the construction of agent-based computational models. We are iteratively refining block-based 

microworlds using the NetTango interface to NetLogo. NetTango makes the computational 

power of NetLogo accessible to authors by using a block-based programming language curated 

to a particular phenomenon. NetTango blocks are not a full programming language, but 

domain-specific blocks relevant to the modeled phenomenon. Previously called semantic blocks 

(Wilkerson-Jerde & Wilensky, 2010) and now called domain blocks (Wagh et al., 2017) the 



blocks are primitive elements of code that represent agents’ actions, which can be combined to 

model a specific phenomenon. We are designing domain-block libraries for simulating complex 

systems phenomena and studying how children use the blocks to engage in scientific theory 

building. This study asks the question “what is the character of student theory building in the 

context of computational modeling?” 

Study Design 

To address this question, we tested NetTango models with middle school students (ages 

12-14) during one-on-one 1.5-hour task-based interviews. During each interview, the student had 

full command of a laptop with an agent-based microworld. The interviewer guided them through 

tasks and questions from a semi-structured protocol, which introduced the features of the 

microworld and then prompted the student to model a particular phenomenon (e.g., an epidemic 

of a disease of their choice).  

This study focuses on an interview with one student, Sage. Sage was 13 years old and had 

just started 8th grade at a public school in her small Midwestern city. Sage explored the Spread of 

Disease model, shown in Figure 1. The screenshot to the left shows the agent-based microworld 

before a model has been built. The screenshot to the right shows the microworld with a model 

that has been built and initialized. In both screenshots, the black box to the left is the world 

which depicts the activity of the agents that are programmed to behave according to the rules 

specified by the model. The setup and go buttons are controlled by procedures (red blocks) that 

the user must drag from the block library (far right) into the modeling field (middle) and then 

define by connecting with blocks (purple, grey, and green), such as move, if contact person, and 

infect. 



[Figure 1 goes here] 

Sage’s interview was recorded using video, audio, and screencast technology. The audio 

recording was transcribed. A fine-grained grounded analysis was applied to both the screencast 

and interview transcript to identify theory-building moves that Sage enacted. First, the screencast 

of Sage’s entire interview was reviewed and times were noted during which she engaged in 

building models for particular diseases, namely Ebola, the flu, and a zombie apocalypse. These 

episodes were then marked on the transcript, which was then read for evidence of 

theory-building moves that corresponded with basic categories determined in prior research 

(Authors, 2020b). These categories were 1) initial articulation moves, 2) testing moves, 3) 

refining moves, 4) applying moves, and 5) modeling meta-knowledge. The moves identified in 

the transcript were coordinated with screencast recordings to get a sense for the student’s actions 

in the microworld and develop a more complete picture of her theory-building moves.  

Findings 

The grounded analysis revealed 37 theory-building moves across the five categories. The 

general categories and specific moves are outlined in Table 1 and then introduced (in italics) and 

briefly unpacked below. They are described in greater detail and exemplified in Tables 2-6, in 

Appendix B. 

[Table 1 goes here] 

Initial Articulation Moves 

Sage crafted her initial model through initial articulation moves, including recounting 

prior knowledge, initial planning, determining relevant code, specifying agent rules, 

purposefully selecting and approximating parameter values, deciding how to model time, and 



reaching for and making sense of available resources. For example, in her initial construction of 

a model of Ebola, Sage began by describing what she knew about the disease and how this might 

be represented in her model. She then looked through the available code and determined that 

blocks like “infect in a radius” were less useful to her model, because her understanding of Ebola 

was that it was transmitted through direct contact. She dragged code-blocks into the authoring 

space to create a basic model where people would infect each other with some probability when 

they made contact. She asked if she could search for information about the disease online, and 

translated what she found into approximate values for parameters including probability of 

infection, death and recovery.  

Testing Moves 

Sage tested her model through testing moves, including predicting and explaining the 

outcome of a model run, planning for purposeful exploration, testing parameter settings or 

agent-rules, comparing trials, slowing down a model run, observing model behavior, noticing 

how a model implements code, comparing results of a model run with predictions, evaluating a 

model-run outcome and explaining its cause, and comparing the modeled phenomenon with 

other phenomena. For example, in her construction of a model of the flu, Sage predicted the 

people would spread the infection much more quickly than Ebola, noting that the probability of 

dying was much lower in the case of the flu, so that people should live long enough to transmit 

the disease. When the rate of transmission was still not as high as she had expected, she 

announced that she wanted to collect a dataset and compare runs with different probabilities of 

infection, and that she wanted to slow the model to see what was happening in agent interactions 

when the disease died out.  



 

Refining Moves 

Sage modified or debugged her model through refining moves, including noticing a 

problem and modifying code blocks, modifying parameter values for ease of mental 

mathematical computations, modifying code to simplify the model, and debugging thinking. For 

example, before testing her initial model of Ebola, Sage noticed a problem with the code: a 

command for “move” was missing from the procedure. She noted that this wouldn’t work - the 

people would stay where they were and no one would get anyone else sick. She added the 

“move” block to remedy the situation. She also modified the number of initially healthy and sick 

people so that they would add to 100, for ease of comparing later ratios with initial ones. She 

debugged her thinking and refined her model when her first model run produced a surprising 

result: within several ticks everyone in the world was healthy. She attributed this to the very high 

death rate and lowered the probability of death to get the disease to spread. After constructing 

and testing her model of the flu, she noted that surprisingly, the flu epidemic was more deadly at 

the population level, despite Ebola being the more deadly disease at the individual level. This is a 

notable shift in understanding, which shows that Sage’s engagement in computational modeling 

is helping her to resolve a commonplace confusion regarding level of causality (Wilensky & 

Resnick, 1999).  

Applying Moves 

Sage used the model to make sense of phenomena through applying moves, including 

describing the outcome of a model run, interpreting numerical readouts, coordinating data from 

multiple readouts in the interface, referencing data, making sense of outcomes, explaining the 



aggregate-level phenomenon as a result of agent-level interactions, comparing the model with 

the real world, comparing the modeled phenomenon with other phenomena, drawing conclusions 

about complex systems dynamics, assessing the reasonableness of results, and looking for key 

relationships. For example, in her model of the flu, Sage interpreted the graph to draw 

conclusions about the rate the disease spread through the population. She coordinated between 

the graph and the readout of the number of people in the world to understand the role of the 

probability of death in the model. She also related the outcomes of her model to what she knew 

about the Spanish flu epidemic of the early 20th century.  

Meta-Knowledge 

Meta-knowledge did not consist of moves, but rather, elements of understanding Sage 

showed regarding the nature of her model and the activities in which she engaged, including 

identifying limitations of the microworld, distinguishing critical from cosmetic components, 

noticing the approximate nature of the model, identifying how the approximate nature of the 

model may or may not impact model outcomes, awareness of the limits of her own knowledge, 

and reaching for credible resources. For example, in her zombie apocalypse model, Sage wished 

she could program the zombies to move more slowly than humans in the world. She remarked 

she didn’t think this would really make a difference, because she thought agent speed was “just 

cosmetic” and wouldn’t actually influence the model’s outcomes. In her model of the flu, she 

noted that the maximum number of people who could initially occupy the world was 400, and 

that this was considerably smaller than the population of a city. Unlike agent speed, Sage 

regarded population size as a factor that could change the dynamics, and therefore outcome, of 

the model run.  



 

 

Significance 

This study characterizes student theory building in the context of computational 

agent-based modeling. Findings suggest that such theory building is a highly complex activity, 

consisting of a constellation of moves related to the initial articulation, testing, refinement, and 

application of the model, as well as meta-knowledge concerned with the nature of models and 

modeling. The work makes a contribution to the larger project of characterizing the nature of 

student engagement in different forms of scientific theory building (Author, 2020b). More 

specifically, our findings offer insight into the nature of student work at the intersection of two 

scientific practices emphasized by the NGSS: modeling and computational thinking. Our work is 

foundational for the development of learning objectives for science curricula and assessments 

that capture the richness of student engagement in scientific theory building.  
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Appendix A: Figures 

 

        

 

Figure 1. Screenshots of the Spread of Disease microworld before (left image) and after (right 

image) a model has been built. 

Appendix B: Tables 

Table 1. Theory Building Moves 

Initial 

articulation 

moves 

Testing moves Refining moves Applying moves Meta-knowledge 

Recounting prior 

knowledge 

 

Initial planning 

 

Predicting the 

outcome of a 

model run  

 

Explaining the 

prediction  

Noticing a 

problem 

 

Modifying code 

to solve a 

problem 

Describing the 

outcome of a 

model run 

 

Identifying 

limitations of the 

modeling 

environment  

 



Determining 

relevant code  

 

Specifying agent 

rules 

 

Purposefully 

selecting and 

approximating 

parameter values 

 

Deciding how to 

model time  

 

Reaching for 

available 

resources 

 

Making sense of 

available 

resources 

 

Planning for 

purposeful 

exploration 

 

Testing 

parameter 

settings or 

agent-rules  

 

Comparing 

across trials 

 

Slowing down a 

model run 

 

Observing 

model behavior 

 

Noticing how a 

model 

implements code 

 

Modifying 

parameter values 

for ease of 

mental 

mathematical 

computations 

 

Modifying code 

to simplify the 

model 

 

Debugging 

thinking 

Interpreting 

numerical 

readouts 

 

Coordinating 

data from 

multiple 

readouts in the 

interface 

 

Referencing data 

 

Making sense of 

outcomes  

 

Explaining the 

aggregate-level 

phenomenon as 

a result of 

agent-level 

interactions  

 

Distinguishing 

critical from 

cosmetic 

components  

 

Noticing the 

approximate 

nature of the 

model  

 

Identifying how 

the approximate 

nature of the 

model may or 

may not impact 

model outcomes  

 

Awareness of 

the limits of 

one’s own 

knowledge  

 



 

Comparing 

results of a 

model run with 

predictions  

 

Evaluating a 

model-run 

outcome  

Explaining the 

cause of a model 

run 

 

Comparing the 

modeled 

phenomenon 

with other 

phenomena 

Comparing the 

model with the 

real world  

 

Comparing the 

modeled 

phenomenon 

with other 

phenomena  

 

Drawing 

conclusions 

about complex 

systems 

dynamics 

 

Assessing the 

reasonableness 

of results 

 

Looking for key 

relationships 

Reaching for 

credible 

resources 



Table 2. Initial Articulation Moves 

Move Description Example 

Recounting prior knowledge The student considers what 

they know about the 

phenomenon of interest.  

The student recounts 

knowledge they have about 

getting sick and spreading 

disease, or stories they have 

heard about the particular 

disease. 

Initial planning The student considers what 

should go in the model based 

on their prior knowledge of 

the phenomenon.  

The student knows that 

people spread germs by 

coughing and sneezing or 

through direct contact, and 

that how the germs are 

transmitted depends on the 

disease. 

Determining relevant code The student considers what 

should go in the model based 

on the available code blocks 

and their relevance to the 

phenomenon.  

The student decides that “die” 

is relevant for a model of 

Ebola, but not for a model of 

the flu. 



Specifying agent rules The student specifies the rules 

of agent behavior and 

interaction, encoding their 

expectations by arranging 

blocks in the “go” procedure.  

The student specifies that 

every tick of the clock, agents 

move, infect their neighbor if 

they are sick, and recover 

with some probability.  

Purposefully selecting 

parameter values 

The student purposefully 

selects the values of 

parameters based on their 

hypotheses of agent 

characteristics and initial 

conditions.  

The student chooses a high 

probability of infection for a 

disease like the flu, because 

they think the flu is pretty 

infectious.  

Approximating parameter 

values 

The student approximates 

parameter values.  

The student uses rounded 

values for the initial number 

of sick and healthy people in 

the world, for ease of 

calculation. They use 

“guesstimates” in the place of 

exact known values for 

parameters like probability of 

infection. 



Deciding how to model time The student considers how 

time should be modeled in the 

simulation.  

The student might choose to 

have ticks represent minutes, 

hours, or days. 

Reaching for available 

resources 

The student reaches for 

available resources to 

supplement their prior 

knowledge.  

The student looks through a 

textbook or conducts a web 

search. 

Making sense of resources The student makes sense of 

available resources, 

translating the information 

into ideas that are useful to 

their construction of the 

computational model.  

The student looks at facts on 

the World Health 

Organization website for 

Ebola and uses calculated 

transmission rates to inform 

the value they select for the 

probability of infection 

parameter. 

Describing expected model 

behavior 

The student describes the 

behavior they expect the 

model to produce, based on 

the computational program 

they have built.  

The student reads through the 

code line by line, checking it 

by describing aloud the 

sequence of actions the agents 

should enact.  



Evaluating initial model code The student evaluates the 

program they have written 

before running the model.  

The student reads through the 

code and notes where they 

expect it to produce the 

expected outcomes, or where 

they are uncertain and 

perhaps experimenting.  

 

Table 3. Testing Moves 

Move Description Example 

Predicting the outcome of a 

model run 

The student describes the 

outcome they expect the 

model to produce, based on 

the parameter settings they 

have selected. 

The student sets the 

probability of infection near 

100% and predicts that 

everyone in the world will be 

sick after only a short number 

of ticks.  

Explaining one’s prediction 

for a model run 

The student explains why 

they expect the model to 

produce the aggregate-level 

outcome they have predicted, 

by reasoning through the 

agent-level interactions.  

The student explains that the 

graph of the percentage of 

infected people should follow 

an S-curve because at first 

very few people have the 

infection to pass on. When 



more people are sick, the rate 

of transmission will pick up 

with more people to pass the 

disease on. Finally, the rate of 

transmission will slow down 

with few people left who are 

susceptible.  

Planning for purposeful 

exploration 

The student makes a plan to 

run the model a number of 

times, varying parameters 

over particular values and 

noting their effects.  

The student plans to explore 

how the rate of recovery 

influences the graph of the 

percentage of people who are 

sick over time. 

Testing parameter settings or 

agent rules 

The student tests a new 

parameter value or agent rules 

by running the model.  

The student increases the 

number of people in the 

world who are sick at the 

beginning of the model run to 

see how that influences the 

model.  

Comparing across trials The student compares the 

outcomes of two or more 

simulation trials, modifying a 

The student changes the 

infectiousness of the disease 

and compares the number of 



parameter from trial to trial.  clock-ticks it takes for 

everyone in the world to get 

sick. 

Slowing down a model run The student might slow down 

the speed of the model run in 

order to see how the 

programmed interactions play 

out in the simulation.  

The student lowers the 

model-run speed in order to 

observe the individual agent 

interactions that result in a 

model where everyone dies 

within a few ticks of the 

clock. 

Observing model behavior The student describes what 

they see happening in the 

model as it runs.  

The student announces that 

the number of people infected 

with Ebola is increasing.  

Noticing how a model 

implements code 

The student makes sense of 

how the model implements 

the code by experimenting 

with the blocks in their 

program.  

The student adjusts the 

infectiousness parameter to 

100% and notices that people 

have to occupy the same 

location in space in order to 

transmit the disease.  

Comparing results of a model The student compares the The student expresses 



run with predictions results of their model testing 

with their predictions for the 

model’s behavior at either the 

agent or aggregate level.  

surprise that the agents in 

their model behave 

differently from their 

expectations, or that the 

aggregate-level outcomes 

represented by numerical 

readouts or graphs roughly 

match their mental-math 

predictions.  

Evaluating model-run 

outcomes 

The student evaluates the 

outcome of the model.  

The student may announce 

that the outcome was boring, 

interesting, or surprising.  

Explaining the cause of a 

model-run outcome 

The student explains the 

outcome of the model at the 

aggregate-level by reasoning 

through the agent-level 

behavior or interactions.  

For example, a student might 

explain that Ebola disappears 

very quickly in their model, 

leaving almost everyone 

healthy, because the 

probability of death is so high 

that the initially infected 

people die before they have a 

chance to infect others in the 



world.  

Comparing the modeled 

phenomenon with other 

phenomena 

The student predicts or makes 

sense of an outcome run by 

comparing the modeled 

phenomenon with another, 

related phenomenon.  

The student compares their 

model of the flu to a model of 

Ebola.  

 

 

Table 4. Refining Moves 

Move Description Example 

Noticing a problem The student notices 

something problematic about 

the model, either in its 

outcome or in a piece of 

model code.  

The student notices that an 

element of code, such as 

“move” is missing from their 

“go” procedure.  

Modifying code to solve a 

problem 

The student debugs the model 

by modifying the agent-rules 

or a parameter.  

If the disease doesn’t spread 

beyond a single person, the 

student modifies the 

probability of infection of the 

disease, or the probability of 



recovery or death for the 

people in the world.  

Modifying parameter values 

for ease of mental math 

The student adjusts parameter 

values so that they can easily 

make sense of changes in 

value that occur in the 

simulation.  

The student sets the number 

of people in the world who 

are initially sick and healthy 

so that they add up to 100, as 

changes in numbers of sick 

and healthy people over time 

can then be thought of as 

changes in percentage. 

Modifying code to simplify 

the model 

The student removes a block 

of code that is complicating 

the model.  

The student has a block for 

“reproduce” in their “go” 

procedure, but then removes 

the block to simplify the 

model and understand the 

relationship between 

probability of recovery and 

the rate of the spread of 

disease. 

Debugging thinking The student debugs their 

thinking as a result of an 

The student might initially 

think that Ebola is very 



unexpected model-run 

outcome.  

deadly at the population level, 

however, when they run their 

model Ebola doesn’t spread 

to very many people, 

violating their expectations. 

This causes them to refine 

their thinking about Ebola, 

understanding that a disease 

that is highly deadly for an 

individual is in fact less 

deadly for a population, 

because it “burns out” quickly 

and therefore has less of a 

chance to spread.  

 

Table 5. Applying Moves 

Move Description Example 

Describing the outcome of a 

model run 

The student describes the 

aggregate-level phenomenon 

or outcome of the model run.  

The student exclaims that all 

of the sick people disappeared 

very quickly.  

Interpreting numerical The student interprets the The student traces their finger 



readouts graph to understand the 

aggregate-level data.  

along the curve and notes that 

the population of sick people 

is increasing and then 

decreasing over time.  

Coordinating data from 

multiple readouts 

The student coordinates data 

from different readouts in the 

interface.  

The student looks at the 

readout for the number of 

people who died to make 

sense of the graph that shows 

the percentage of people who 

are sick over time.  

Referencing data The student refers to data as 

evidence when making a 

claim about the phenomenon.  

The student refers to numbers 

on the graph to talk about 

how the population of sick 

people has increased or 

decreased over time. 

Making sense of outcomes The student makes sense of a 

model run’s outcome by 

considering the causal 

variables at play or by 

reasoning about the causal 

processes encoded in the 

For example, the student 

might determine that 

probability of infection is a 

key variable at play in their 

model of disease spread.  



model.  

Explaining the 

aggregate-level  phenomenon 

as a result of agent 

interactions 

The student explains the 

aggregate-level phenomenon 

as a result of agent 

interactions. 

The student explains that the 

number of people who are 

sick increases slower at first 

because there are fewer 

people to spread the infection.  

Comparing the model with 

the real world 

The student compares the 

results of the model run with 

their understanding of the 

phenomenon in the real 

world.  

The student compares their 

model of the flu with the 

Spanish flu epidemic of the 

early 20th century.  

Comparing the modeled 

phenomenon with other 

phenomena 

The student compares the 

phenomenon they have 

modeled with another, related 

phenomenon.  

The student compares the 

deadliness of Ebola at the 

population level, to the 

deadliness of the flu.  

Drawing conclusions about 

complex systems dynamics 

The student uses the model to 

draw conclusions about 

complex systems dynamics, 

including the emergent nature 

of aggregate-level 

The student notes that Ebola 

is less dangerous to a 

population than the flu, or 

that epidemics are hard to 

start.  



phenomena, the non-linear 

dependency of system 

outcomes on parameters, and 

the importance of feedback 

and thresholds.  

Assessing reasonableness of 

results 

The student assesses the 

reasonableness of the results 

of their model.  

The student notes that the 

number of people who get 

sick makes sense, given the 

probability of recovery. 

Looking for key relationships The student notes a key 

element of theory that they 

would like to identify.  

The student thinks there is a 

ratio between recovery rate 

and probability of infection. 

 

Table 6. Meta-knowledge 

Move Description Example 

Identifying limitations of the 

modeling environment 

The student identifies 

limitations with the modeling 

environment.  

The student notes that there 

are no blocks that would 

allow one to write the 

program so that the healthy 

people move around the 



world while the sick people 

stay at home. 

Distinguishing critical from 

cosmetic components  

The student distinguishes 

between components of the 

model that are critical, vs. 

those that are merely 

cosmetic.  

The student changes the 

indicator of sick vs. healthy 

people from different colors 

to different shapes, but notes 

that this change won’t have 

any impact on the outcome of 

the model run.  

Noticing the approximate 

nature of the model 

The student notes the 

approximate nature of the 

model.  

The student notes that the 

model is different from the 

real world in terms of the 

number of people in the 

world.  

Identifying how the 

approximate nature of the 

model may or may not impact 

model outcomes 

The student identifies ways 

the approximate nature of the 

model may or may not impact 

the result of its simulation.  

The student notes that a city 

with a million people which 

has an initial population of 

sick people of 1% has many 

more sick people than a world 

with the same percentage sick 

but only 200 people, and that 



this may impact whether or 

not the disease takes off.  

Awareness of the limits of 

one’s own knowledge  

The student notes an 

awareness of the limits of 

their own knowledge.  

The student admits they don’t 

know what the probability of 

infection is in real life for 

both the flu and Ebola.  

Reaching for credible 

resources 

The student reaches for 

credible resources in making 

choices about initial 

parameter values.  

The student navigates to the 

website of a well-known and 

respected organization like 

the World Health 

Organization, rather than a 

blog, when looking up 

infectiousness of Ebola vs. 

flu. 

 

 

 

 

 

 

 


